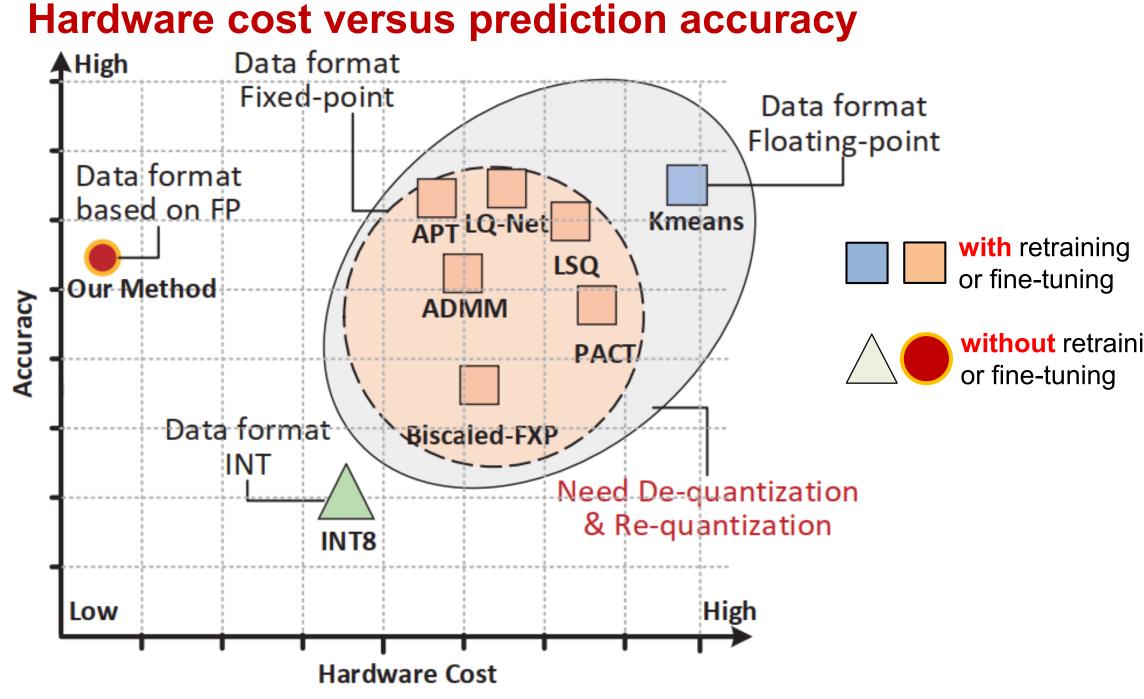


先进计算机体系结构实验室 Advanced Computer Architecture Laborator



University

Motivation

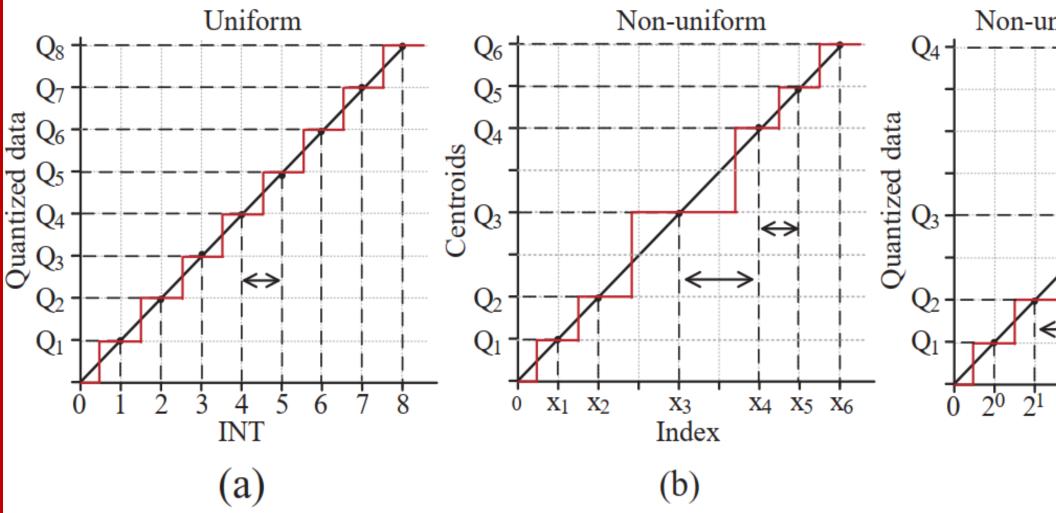
- > Existing quantization methods can be generally separated into **non**uniform methods, and uniform methods.
- Since many users are incapable of retraining DNN due to the **lack** of computing-resource or retraining data, quantization without **retraining** becomes the most popular compression method in many real-world scenarios.
- > Low latency is critical for real-time interactions, while low energy consumption can help companies reduce cost in data-centers and improve the endurance of edge devices.

- > Most dynamic quantization methods have to perform the dequantization and re-quantization process to rescale parameters with the aim of ensuring accuracy.
- \succ As the trade-off of prior quantization methods in terms of data format precision and hardware efficiency, we develop a floatingpoint representation variant, named **Adaptive Floating-Point** (AFP).

Comparison numeric format with INT8, FP32/16, BFP16 and TF32

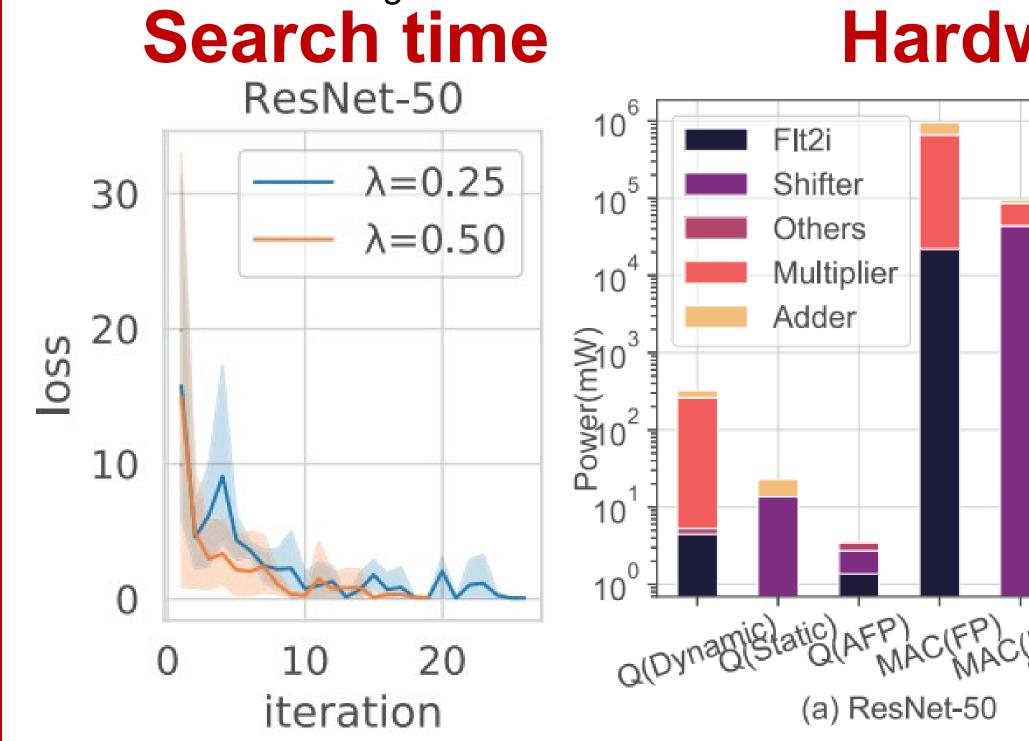
range: ~1e ³⁰ to ~3e ³⁰										
FP32	sign	8-bit exponen	t	23-bit mantissa						
range: ~1e ³⁸ to ~3e ³⁸										
TF32	sign	8-bit exponen	t	10-bit mantissa						
range: ~5.9e ⁻⁸ to ~6.5 ⁴										
FP16	sign	5-bit exponent	10	-bit mantissa						
range: ~1e ³⁸ to ~3e ³⁸										
BF16	sign	8-bit exponent		7-bit mantissa						
range: -127 to 128										
INT8	sign	7-bit integer								

Improving Neural Network Efficiency via Post-training **Quantization with Adaptive Floating-Point**

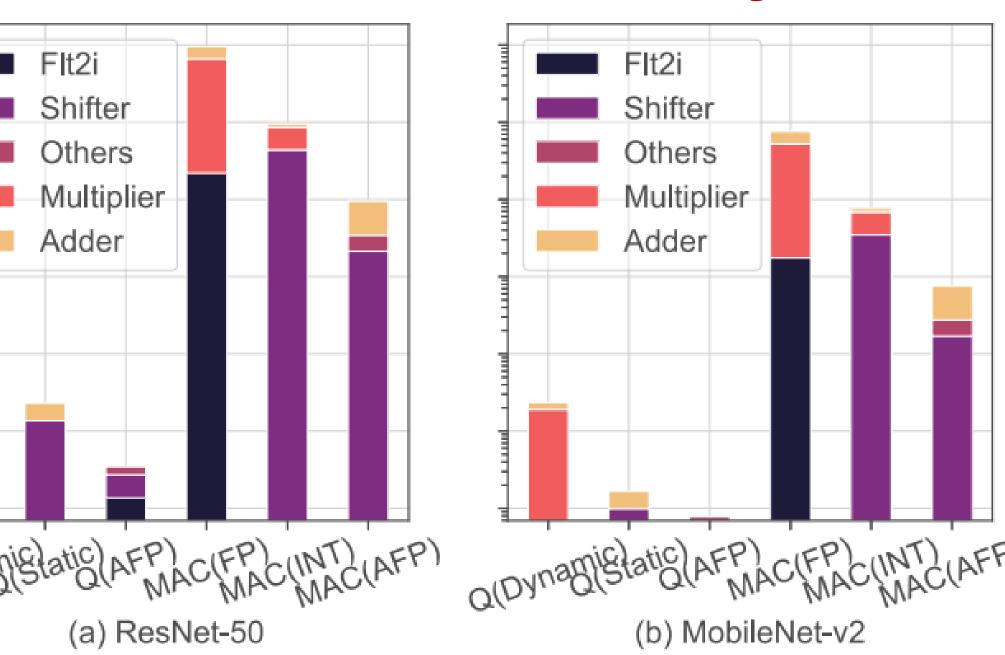

Fangxin Liu¹, Wenbo Zhao¹, Zhezhi He¹, Yanzhi Wang², Zongwu Wang¹, Changzhi Dai³ Xiaoyao Liang¹ and Li Jiang¹

Shanghai Jiao Tong University, Northeastern University, DeepBlue Technology (Shanghai) Co., Ltd.

Adaptive Floating-Point Quantization


- without retraining

- \succ AFP owns varying bitwidth for exponent and mantissa parts (n_{exp} and n_{man}), where the bit-width are chosen w.r.t the target application.
- > In contrast to the fixed bias term adopted by the FP32 (i.e., k = 127), we make such a bias term a tunable as well.

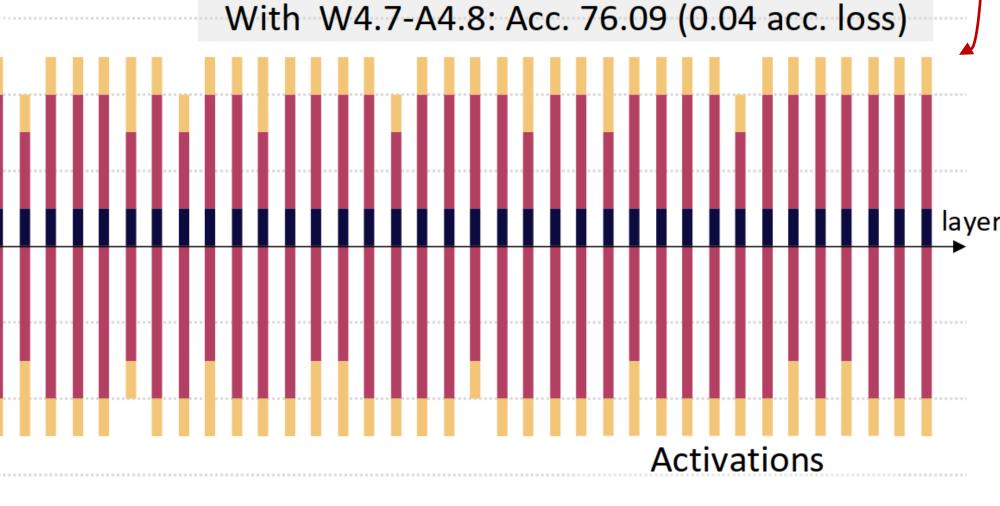

Layer-wise Quantization with AFP

- **Determine bias:** The bias is chosen to allow the maximum value of quantized weights and the maximum value of weights to be consistent, and the range of quantization can cover as much of the distribution of weights as possible.
- **Determine the bit-width of exponent:** The bit-width of exponent should be determined to enable that the range of exponent part can adequately cover the distribution of the weights.
- **Determine the bit-width of mantissa**: The mantissa is a component of a finite floating-point number, with the radix point immediately following the first digit.

AFP-N (Ours) Non-uniform (logarithmic Exponent

Hardware efficiency

	J.								
			Re						
_		Quan.	Bit						
_		scheme	width						
		Full precision INT8 [12]	32 8						
		V-Q [23]	7						
	B	Biscaled-FxP [13]	6						
		ADMM [31] INQ [35]	6 5						
]	Focused-C. [34]	5						
		APT [17]	4						
Г	thi	UNIQ [2] is work(dynamic)	4 4.8						
		is work(dynamic)	3.9						
		his work (static)	4.8						
_	t	his work (static)	3.9						
	6	Weig	hts						
	4		1111						
L	2								
#bit	0								
	2								
	4								
	6								
		■#weight bit (Sign) ■#\	weight bit (E						
		Hardwa	are						
		8							
		7							
	Ļ		2						
	Bit-Widt	6	Wid+						
	Bit	5							
		4							
		3 0.0 0.5	1.0						
		λ							


(a)

Record of the second se

sults on ImageNet

First layer	Last layer	Acc. Top-1(%)	Acc. loss Top-1(%)	Quan. type	No retrain	Data format
	F	ResNet-50				
32	32	76.13	-	-	-	-
8	8	74.9	-1.5	Uniform	\checkmark	INT
7	7	75.89	-0.27	Uniform	×	FP
6	6	70.46	-5.67	Non-uni.	\checkmark	INT
6	6	75.93	-0.2	Non-uni.	×	FP
32	32	74.81	-1.59	Non-uni.	×	FP
5	5	75.86	-1.54	Non-uni.	×	FP
32	32	75.95	-0.18	Non-uni.	×	FP
4	4	74.84	-1.29	Non-uni.	×	FP
5	5	76.09	-0.04	Non-uni.	\checkmark	FP
4	4	75.27	-0.86	Non-uni.	\checkmark	FP
5	5	76.00	-0.13	Non-uni.	\checkmark	FP
4	4	75.11	-1.02	Non-uni.	\checkmark	FP

📕 #weight bit (Mantissa) 🔎 #activation bit (Exponent) 📁 #activation bit (Mantissa)

cost with the sweet-spot

ω	7804.0	2992.3	61.5	33.3	51.1	90.2	207.8	711.7		- 7000
7	4023.4	1583.2	38.1	20.5	37.6	89.1	311.4			- 6000
th 6	2056.4	940.9	25.8	15.1	37.1	133.5				- 5000
Bit-Width 5	1105.2	578.8	26.0	14.9	55.6					- 4000 SS
4 Bit	602.3	426.2	37.2	22.9	\backslash					- 3000
Μ	345.9	383.4	177.1	The Sweet Spot						- 2000
2	200.2	425.7								-1000
0 1 2 3 4 5 6 7 Exponent part (b)										